Skip to content

Core-Readout Models

BaseCoreReadout

Bases: LightningModule

Source code in openretina/models/core_readout.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
class BaseCoreReadout(LightningModule):
    def __init__(
        self,
        core: Core,
        readout: nn.Module,
        learning_rate: float,
        loss: nn.Module | None = None,
        correlation_loss: nn.Module | None = None,
        data_info: dict[str, Any] | None = None,
    ):
        super().__init__()

        self.core = core
        self.readout = readout
        self.learning_rate = learning_rate
        self.loss = loss if loss is not None else PoissonLoss3d()
        self.correlation_loss = correlation_loss if correlation_loss is not None else CorrelationLoss3d(avg=True)
        if data_info is None:
            data_info = {}
        self.data_info = data_info

    def on_train_epoch_end(self):
        # Compute the 2-norm for each layer at the end of the epoch
        core_norms = grad_norm(self.core, norm_type=2)
        self.log_dict(core_norms, on_step=False, on_epoch=True)
        readout_norms = grad_norm(self.readout, norm_type=2)
        self.log_dict(readout_norms, on_step=False, on_epoch=True)

    def forward(self, x: Float[torch.Tensor, "batch channels t h w"], data_key: str | None = None) -> torch.Tensor:
        output_core = self.core(x)
        output_readout = self.readout(output_core, data_key=data_key)
        return output_readout

    def training_step(self, batch: tuple[str, DataPoint], batch_idx: int) -> torch.Tensor:
        session_id, data_point = batch
        model_output = self.forward(data_point.inputs, session_id)
        loss = self.loss.forward(model_output, data_point.targets)
        regularization_loss_core = self.core.regularizer()
        regularization_loss_readout = self.readout.regularizer(session_id)  # type: ignore
        total_loss = loss + regularization_loss_core + regularization_loss_readout
        correlation = -self.correlation_loss.forward(model_output, data_point.targets)

        self.log("regularization_loss_core", regularization_loss_core, on_step=False, on_epoch=True)
        self.log("regularization_loss_readout", regularization_loss_readout, on_step=False, on_epoch=True)
        self.log("train_total_loss", total_loss, on_step=False, on_epoch=True)
        self.log("train_loss", loss, on_step=False, on_epoch=True)
        self.log("train_correlation", correlation, on_step=False, on_epoch=True, prog_bar=True)

        return total_loss

    def validation_step(self, batch: tuple[str, DataPoint], batch_idx: int) -> torch.Tensor:
        session_id, data_point = batch
        model_output = self.forward(data_point.inputs, session_id)
        loss = self.loss.forward(model_output, data_point.targets) / sum(model_output.shape)
        regularization_loss_core = self.core.regularizer()
        regularization_loss_readout = self.readout.regularizer(session_id)  # type: ignore
        total_loss = loss + regularization_loss_core + regularization_loss_readout
        correlation = -self.correlation_loss.forward(model_output, data_point.targets)

        self.log("val_loss", loss, logger=True, prog_bar=True)
        self.log("val_regularization_loss_core", regularization_loss_core, logger=True)
        self.log("val_regularization_loss_readout", regularization_loss_readout, logger=True)
        self.log("val_total_loss", total_loss, logger=True)
        self.log("val_correlation", correlation, logger=True, prog_bar=True)

        return loss

    def test_step(self, batch: tuple[str, DataPoint], batch_idx: int, dataloader_idx: int = 0) -> torch.Tensor:
        session_id, data_point = batch
        model_output = self.forward(data_point.inputs, session_id)
        loss = self.loss.forward(model_output, data_point.targets) / sum(model_output.shape)
        avg_correlation = -self.correlation_loss.forward(model_output, data_point.targets)
        per_neuron_correlation = self.correlation_loss._per_neuron_correlations

        # Add metric and performances to data_info for downstream tasks
        if "pretrained_performance_metric" not in self.data_info:
            self.data_info["pretrained_performance_metric"] = "test " + type(self.correlation_loss).__name__

        if "pretrained_performance" not in self.data_info:
            self.data_info["pretrained_performance"] = {}

        # Also add cut frames if not present
        if "model_cut_frames" not in self.data_info:
            self.data_info["model_cut_frames"] = data_point.targets.size(1) - model_output.size(1)

        self.data_info["pretrained_performance"][session_id] = per_neuron_correlation

        self.log_dict(
            {
                "test_loss": loss,
                "test_correlation": avg_correlation,
            }
        )

        return loss

    def on_test_end(self):
        # Update internal lightning hyperparameters to save the updated data_info after testing.
        self.hparams["data_info"] = self.data_info

        # Save using checkpointer callback (should always exist with our default configs)
        if self.trainer and self.trainer.checkpoint_callback:
            best_model_path = self.trainer.checkpoint_callback.best_model_path
            if best_model_path:
                final_path = best_model_path.replace(".ckpt", "_final.ckpt")
                self.trainer.save_checkpoint(final_path)

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
        lr_decay_factor = 0.3
        patience = 5
        tolerance = 0.0005
        min_lr = self.learning_rate * (lr_decay_factor**3)
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
            optimizer,
            mode="max",
            factor=lr_decay_factor,
            patience=patience,
            threshold=tolerance,
            threshold_mode="abs",
            min_lr=min_lr,
        )
        return {
            "optimizer": optimizer,
            "lr_scheduler": {
                "scheduler": scheduler,
                "monitor": "val_correlation",
                "frequency": 1,
            },
        }

    def save_weight_visualizations(self, folder_path: str, file_format: str = "jpg", state_suffix: str = "") -> None:
        """Save weight visualizations for core and readout modules.

        Args:
            folder_path: Base directory to save visualizations
            file_format: Image format for saved files
            state_suffix: Optional suffix for state identification
        """

        # Helper function to call save_weight_visualizations with dynamic parameter support
        def _call_save_viz(module: Any, subfolder: str) -> None:
            full_path = os.path.join(folder_path, subfolder)

            # Check if the method supports state_suffix parameter
            if "state_suffix" in inspect.signature(module.save_weight_visualizations).parameters:
                kwargs = {"state_suffix": state_suffix}
            else:
                kwargs = {}

            module.save_weight_visualizations(full_path, file_format, **kwargs)

        _call_save_viz(self.core, "weights_core")
        _call_save_viz(self.readout, "weights_readout")

    def compute_readout_input_shape(
        self, core_in_shape: tuple[int, int, int, int], core: Core
    ) -> tuple[int, int, int, int]:
        # Use the same device as the core's parameters to avoid potential errors at init.
        device = next(core.parameters()).device

        with torch.no_grad():
            stimulus = torch.zeros((1,) + tuple(core_in_shape), device=device)
            core_test_output = core.forward(stimulus)

        return core_test_output.shape[1:]  # type: ignore

    def stimulus_shape(self, time_steps: int, num_batches: int = 1) -> tuple[int, int, int, int, int]:
        channels, width, height = self.data_info["input_shape"]  # type: ignore
        return num_batches, channels, time_steps, width, height

    def update_model_data_info(self, data_info: dict[str, Any]) -> None:
        """To update relevant model attributes when loading a (trained) model and training it with new data only."""
        # update model.data_info and n_neurons_dict with the new data info
        for key in data_info.keys():
            if key == "input_shape":
                assert all(self.data_info[key][dim] == data_info[key][dim] for dim in range(len(data_info[key]))), (
                    f"Input shapes don't match: model has {self.data_info[key]}, new data has {data_info[key]}"
                )
            else:
                self.data_info[key].update(data_info[key])

        # update saved hyperparameters (so that the model can be loaded from checkpoint correctly)
        if hasattr(self, "hparams"):
            self.hparams["n_neurons_dict"] = self.data_info["n_neurons_dict"]
            self.hparams["data_info"] = self.data_info

    @property
    def pretrained_cfg(self) -> dict[str, Any]:
        """Alias for data_info, following `timm` (Pytorch Image Models) conventions."""
        return self.data_info

pretrained_cfg property

Alias for data_info, following timm (Pytorch Image Models) conventions.

save_weight_visualizations(folder_path, file_format='jpg', state_suffix='')

Save weight visualizations for core and readout modules.

Parameters:

Name Type Description Default
folder_path str

Base directory to save visualizations

required
file_format str

Image format for saved files

'jpg'
state_suffix str

Optional suffix for state identification

''
Source code in openretina/models/core_readout.py
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def save_weight_visualizations(self, folder_path: str, file_format: str = "jpg", state_suffix: str = "") -> None:
    """Save weight visualizations for core and readout modules.

    Args:
        folder_path: Base directory to save visualizations
        file_format: Image format for saved files
        state_suffix: Optional suffix for state identification
    """

    # Helper function to call save_weight_visualizations with dynamic parameter support
    def _call_save_viz(module: Any, subfolder: str) -> None:
        full_path = os.path.join(folder_path, subfolder)

        # Check if the method supports state_suffix parameter
        if "state_suffix" in inspect.signature(module.save_weight_visualizations).parameters:
            kwargs = {"state_suffix": state_suffix}
        else:
            kwargs = {}

        module.save_weight_visualizations(full_path, file_format, **kwargs)

    _call_save_viz(self.core, "weights_core")
    _call_save_viz(self.readout, "weights_readout")

update_model_data_info(data_info)

To update relevant model attributes when loading a (trained) model and training it with new data only.

Source code in openretina/models/core_readout.py
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def update_model_data_info(self, data_info: dict[str, Any]) -> None:
    """To update relevant model attributes when loading a (trained) model and training it with new data only."""
    # update model.data_info and n_neurons_dict with the new data info
    for key in data_info.keys():
        if key == "input_shape":
            assert all(self.data_info[key][dim] == data_info[key][dim] for dim in range(len(data_info[key]))), (
                f"Input shapes don't match: model has {self.data_info[key]}, new data has {data_info[key]}"
            )
        else:
            self.data_info[key].update(data_info[key])

    # update saved hyperparameters (so that the model can be loaded from checkpoint correctly)
    if hasattr(self, "hparams"):
        self.hparams["n_neurons_dict"] = self.data_info["n_neurons_dict"]
        self.hparams["data_info"] = self.data_info