Skip to content

Linear-Nonlinear Models

LNP

Bases: Module

Source code in openretina/models/linear_nonlinear.py
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
class LNP(nn.Module):
    # Linear nonlinear Poisson
    def __init__(
        self,
        in_shape: Int[tuple, "channel time height width"],
        outdims: int,
        smooth_weight: float = 0.0,
        sparse_weight: float = 0.0,
        smooth_regularizer: str = "LaplaceL2norm",
        laplace_padding=None,
        nonlinearity: str = "exp",
        **kwargs,
    ):
        super().__init__()
        self.smooth_weight = smooth_weight
        self.sparse_weight = sparse_weight
        self.kernel_size = tuple(in_shape[2:])
        self.in_channels = in_shape[0]
        self.n_neurons = outdims
        self.nonlinearity = torch.exp if nonlinearity == "exp" else F.__dict__[nonlinearity]

        self.inner_product_kernel = nn.Conv3d(
            in_channels=self.in_channels,
            out_channels=self.n_neurons,  # Each neuron gets its own kernel
            kernel_size=(1, *self.kernel_size),  # Not using time
            bias=False,
            stride=1,
        )

        nn.init.xavier_normal_(self.inner_product_kernel.weight.data)

        regularizer_config = (
            dict(padding=laplace_padding, kernel=self.kernel_size)
            if smooth_regularizer == "GaussianLaplaceL2"
            else dict(padding=laplace_padding)
        )

        self._smooth_reg_fn = regularizers.__dict__[smooth_regularizer](**regularizer_config)

    def forward(self, x: Float[torch.Tensor, "batch channels t h w"], data_key=None, **kwargs):
        out = self.inner_product_kernel(x)
        out = self.nonlinearity(out)
        out = rearrange(out, "batch neurons t 1 1 -> batch t neurons")
        return out

    def weights_l1(self, average: bool = True):
        """Returns l1 regularization across all weight dimensions

        Args:
            average (bool, optional): use mean of weights instead of sum. Defaults to True.
        """
        if average:
            return self.inner_product_kernel.weight.abs().mean()
        else:
            return self.inner_product_kernel.weight.abs().sum()

    def laplace(self):
        # Squeezing out the empty time dimension so we can use 2D regularizers
        return self._smooth_reg_fn(self.inner_product_kernel.weight.squeeze(2))

    def regularizer(self, **kwargs):
        return self.smooth_weight * self.laplace() + self.sparse_weight * self.weights_l1()

    def initialize(self, *args, **kwargs):
        pass

weights_l1(average=True)

Returns l1 regularization across all weight dimensions

Parameters:

Name Type Description Default
average bool

use mean of weights instead of sum. Defaults to True.

True
Source code in openretina/models/linear_nonlinear.py
64
65
66
67
68
69
70
71
72
73
def weights_l1(self, average: bool = True):
    """Returns l1 regularization across all weight dimensions

    Args:
        average (bool, optional): use mean of weights instead of sum. Defaults to True.
    """
    if average:
        return self.inner_product_kernel.weight.abs().mean()
    else:
        return self.inner_product_kernel.weight.abs().sum()

SingleCellSeparatedLNP

Bases: LightningModule

Source code in openretina/models/linear_nonlinear.py
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
class SingleCellSeparatedLNP(LightningModule):
    def __init__(
        self,
        in_shape: Int[tuple, "channel time height width"],
        rf_location: Optional[Int[tuple, "y x"]] = None,
        spat_kernel_size: Int[tuple, "height width"] = (15, 15),
        learning_rate: float = 1e-3,
        rank: int = 1,
        smooth_weight_spat: float = 0.0,
        smooth_weight_temp: float = 0.0,
        sparse_weight: float = 0.0,
        smooth_regularizer_spat: str = "LaplaceL2norm",
        smooth_regularizer_temp: str = "Laplace1d",
        smooth_regularizer: str = "LaplaceL2norm",
        laplace_padding=None,
        nonlinearity: str = "exp",
        fit_gaussian: bool = False,
        normalize_weights: bool = True,
        loss=None,
        correlation_loss=None,
        **kwargs,
    ):
        super().__init__()
        self.learning_rate = learning_rate
        self.loss = loss if loss is not None else PoissonLoss3d()
        self.correlation_loss = correlation_loss if correlation_loss is not None else CorrelationLoss3d(avg=True)
        self.smooth_weight_spat = smooth_weight_spat
        self.smooth_weight_temp = smooth_weight_temp
        self.sparse_weight = sparse_weight
        self.smooth_regularizer_spat = smooth_regularizer_spat
        self.smooth_regularizer_temp = smooth_regularizer_temp
        self.smooth_regularizer = smooth_regularizer
        self.normalize_weights = normalize_weights
        self.crop = (in_shape[-1] != spat_kernel_size[1]) or (in_shape[-2] != spat_kernel_size[0])
        # if location is not provided, use the center of the input
        if rf_location is None:
            rf_location = (in_shape[2] // 2, in_shape[3] // 2)
        self.location = rf_location

        regularizer_config_spat = (
            dict(padding=laplace_padding, kernel=self.spat_kernel_size)
            if smooth_regularizer_spat == "GaussianLaplaceL2"
            else dict(padding=laplace_padding)
        )
        regularizer_config_temp = (
            dict(padding=laplace_padding, kernel=self.temp_kernel_size)
            if smooth_regularizer_temp == "GaussianLaplaceL2"
            else dict(padding=laplace_padding)
        )

        self._smooth_reg_fn_spat = regularizers.__dict__[smooth_regularizer_spat](**regularizer_config_spat)
        self._smooth_reg_fn_temp = regularizers.__dict__[smooth_regularizer_temp](**regularizer_config_temp)

        self.kernel_size = spat_kernel_size
        self.in_channels = in_shape[0]
        self.n_neurons = 1
        self.nonlinearity = (
            ParametrizedSoftplus() if nonlinearity == "parametrized_softplus" else F.__dict__[nonlinearity]
        )
        self.fit_gaussian = fit_gaussian
        self.space_conv = nn.Conv3d(
            in_channels=self.in_channels,
            out_channels=rank,
            kernel_size=(1, *self.kernel_size),  # Not using time
            bias=False,
            stride=1,
        )
        self.time_conv = nn.Conv3d(
            in_channels=rank, out_channels=1, kernel_size=(in_shape[1], 1, 1), bias=False, stride=1
        )

        nn.init.xavier_normal_(self.space_conv.weight.data)
        nn.init.xavier_normal_(self.time_conv.weight.data)

    # TODO: Think about whether or not to leave this to the dataloader
    def crop_input(self, input_tensor: Float[torch.Tensor, "batch channels t h w"]):
        """Crops the input tensor to the size of the receptive field."""
        batch_size, channels, time, h, w = input_tensor.shape
        input_tensor = input_tensor[
            :,
            :,
            :,
            self.location[0] - min(self.kernel_size[0] // 2, self.location[0]) : self.location[0]
            + min(self.kernel_size[0] // 2 + self.kernel_size[0] % 2, h - self.location[0]),
            self.location[1] - min(self.kernel_size[1] // 2, self.location[1]) : self.location[1]
            + min(self.kernel_size[1] // 2 + self.kernel_size[1] % 2, w - self.location[1]),
        ]
        return input_tensor

    def training_step(self, batch: tuple[str, DataPoint], batch_idx: int) -> torch.Tensor:
        session_id, data_point = batch
        if self.crop:
            images = self.crop_input(data_point.inputs)
        else:
            images = data_point.inputs
        model_output = self.forward(images, session_id)
        loss = self.loss.forward(model_output, data_point.targets)
        regularization = self.regularizer()
        total_loss = loss + regularization
        correlation = -self.correlation_loss.forward(model_output, data_point.targets)

        self.log("regularization_loss_core", regularization, on_step=False, on_epoch=True)
        self.log("train_total_loss", total_loss, on_step=False, on_epoch=True)
        self.log("train_loss", loss, on_step=False, on_epoch=True)
        self.log("train_correlation", correlation, on_step=False, on_epoch=True, prog_bar=True)

        return total_loss

    def validation_step(self, batch: tuple[str, DataPoint], batch_idx: int) -> torch.Tensor:
        session_id, data_point = batch
        if self.crop:
            images = self.crop_input(data_point.inputs)
        else:
            images = data_point.inputs
        model_output = self.forward(images, session_id)
        loss = self.loss.forward(model_output, data_point.targets) / sum(model_output.shape)
        regularization = self.regularizer()
        total_loss = loss + regularization
        correlation = -self.correlation_loss.forward(model_output, data_point.targets)

        self.log("val_loss", loss, logger=True, prog_bar=True)
        self.log("val_regularization_loss", regularization, logger=True)
        self.log("val_total_loss", total_loss, logger=True)
        self.log("val_correlation", correlation, logger=True, prog_bar=True)

        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate)
        lr_decay_factor = 0.3
        patience = 5
        tolerance = 0.0005
        min_lr = self.learning_rate * (lr_decay_factor**3)
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
            optimizer,
            mode="max",
            factor=lr_decay_factor,
            patience=patience,
            threshold=tolerance,
            threshold_mode="abs",
            min_lr=min_lr,
        )
        return {
            "optimizer": optimizer,
            "lr_scheduler": {
                "scheduler": scheduler,
                "monitor": "val_correlation",
                "frequency": 1,
            },
        }

    def laplace(self):
        return self.smooth_weight_spat * self._smooth_reg_fn_spat(
            self.space_conv.weight.squeeze(2)
        ) + self.smooth_weight_temp * self._smooth_reg_fn_temp(self.time_conv.weight.squeeze(-1, -2))

    def weights_l1(self, average: bool = True):
        """Returns l1 regularization across all weight dimensions

        Args:
            average (bool, optional): use mean of weights instead of sum. Defaults to True.
        """
        if average:
            return self.space_conv.weight.abs().mean() + self.time_conv.weight.abs().mean()
        else:
            return self.space_conv.weight.abs().sum() + self.time_conv.weight.abs().sum()

    def normalize_kernels(self):
        """Normalizes the kernels to have unit norm."""
        with torch.no_grad():
            self.space_conv.weight.data /= self.space_conv.weight.data.norm(keepdim=True)
            self.time_conv.weight.data /= self.time_conv.weight.data.norm(keepdim=True)

    def forward(self, x: Float[torch.Tensor, "batch channels t h w"], data_key=None, **kwargs):
        if self.normalize_weights:
            self.normalize_kernels()

        out = self.space_conv(x)
        out = self.time_conv(out)
        out = self.nonlinearity(out)
        out = rearrange(out, "batch neurons t 1 1 -> batch t neurons")
        return out

    def regularizer(self):
        return self.laplace() + self.sparse_weight * self.weights_l1()

crop_input(input_tensor)

Crops the input tensor to the size of the receptive field.

Source code in openretina/models/linear_nonlinear.py
179
180
181
182
183
184
185
186
187
188
189
190
191
def crop_input(self, input_tensor: Float[torch.Tensor, "batch channels t h w"]):
    """Crops the input tensor to the size of the receptive field."""
    batch_size, channels, time, h, w = input_tensor.shape
    input_tensor = input_tensor[
        :,
        :,
        :,
        self.location[0] - min(self.kernel_size[0] // 2, self.location[0]) : self.location[0]
        + min(self.kernel_size[0] // 2 + self.kernel_size[0] % 2, h - self.location[0]),
        self.location[1] - min(self.kernel_size[1] // 2, self.location[1]) : self.location[1]
        + min(self.kernel_size[1] // 2 + self.kernel_size[1] % 2, w - self.location[1]),
    ]
    return input_tensor

normalize_kernels()

Normalizes the kernels to have unit norm.

Source code in openretina/models/linear_nonlinear.py
271
272
273
274
275
def normalize_kernels(self):
    """Normalizes the kernels to have unit norm."""
    with torch.no_grad():
        self.space_conv.weight.data /= self.space_conv.weight.data.norm(keepdim=True)
        self.time_conv.weight.data /= self.time_conv.weight.data.norm(keepdim=True)

weights_l1(average=True)

Returns l1 regularization across all weight dimensions

Parameters:

Name Type Description Default
average bool

use mean of weights instead of sum. Defaults to True.

True
Source code in openretina/models/linear_nonlinear.py
260
261
262
263
264
265
266
267
268
269
def weights_l1(self, average: bool = True):
    """Returns l1 regularization across all weight dimensions

    Args:
        average (bool, optional): use mean of weights instead of sum. Defaults to True.
    """
    if average:
        return self.space_conv.weight.abs().mean() + self.time_conv.weight.abs().mean()
    else:
        return self.space_conv.weight.abs().sum() + self.time_conv.weight.abs().sum()